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A B S T R A C T

Linearity is considered as a fundamental property of significant importance in numerous domains. A linear
mathematical expression is clear, concise, and convenient for solving problems, making it a valuable tool for
approximating complex issues. In recent years, Deng entropy has been proposed as a generalization of Shannon
entropy, applied to measure the uncertainty degree of the mass function in the power set. There are two main
contributions in this paper. One is that the linearity can be observed in Deng entropy. We present a set of
specific mass functions named power assigned mass function (PAMF), which could generate linear type Deng
entropy (LTDE). The other is that we find the slope is nothing else but the information fractal dimension of
mass function. Moreover, we discover that for any given slope within the range of 0 to ln 3

ln 2
, at least one mass

function that yields Deng entropy corresponding to the given slope can be derived through the mass function
generator (MFG), in a strict linear way. Some proofs, numerical examples, discussions and an error analysis
are provided to validate the effectiveness of our findings.
1. Introduction

The measurement of uncertainty has long been a pivotal research
focus in the information theory. In order to model and manage infor-
mation with uncertainty, various related theories have been developed,
such as probability theory [1], Dempster-Shafer evidence theory [2,3],
fuzzy sets [4], quantum evidence theory [5,6], and random permuta-
tion set [7]. These theories have found extensive applications across di-
verse domains including risk analysis [8], decision making [9], pattern
classification [10–13], cellular automaton [14,15], fractal theory [16–
19], information fusion [20], complex networks [21,22], information
measure [23] and information dimension [24,25].

In the information theory, entropy is a powerful tool for quan-
tifying the uncertainty of information. Various types of information
entropy have been proposed, such as Shannon entropy [26], Rényi
entropy [27], Tsallis entropy [28], fuzzy entropy [29], complex en-
tropy [30], and quantum X-entropy [6] have found specific appli-
cations [31–33]. Deng entropy [34], as a generalization of Shannon
entropy, effectively measures the uncertainty degree of the mass func-
tion in the power set. In recent years, extensive studies have been
devoted to exploring its properties [35,36], generalizations [37], and
maximum entropy [38]. Furthermore, Deng entropy has found applica-
tions in a multitude of fields, including probability distribution [39,
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40], information volume [41–43], decision making [44,45], feature
extraction [46], cellular automaton [47] and time series analysis [48,
49].

The linearity property represents a fundamental and essential char-
acteristic that finds widespread application in various research do-
mains, including linear regression in statistics [50], linear quadratic
regulator (LQR) in control theory [51], linear systems in signal pro-
cessing [52], linear fractal interpolation function in fractal interpola-
tion [53,54] and support vector machine (SVM) in machine learning
and deep learning [55,56]. Interestingly, linearity can be observed in
studies related to Deng entropy as well. In the numerical examples pre-
sented in [34], we distinctly observe that Deng entropy corresponding
to certain mass functions exhibits a linear trend concerning the scale
of the frame of discernment (SFOD). Once again, in the study of the
maximum Deng entropy [38], a strong linear relationship is presented
between the maximum Deng entropy and SFOD. Last but not least, with
the proposal of the information dimension of mass function based on
Deng entropy [57], the linearity in Deng entropy becomes increasingly
apparent. Currently, there are three mass functions that result in linear
type Deng entropy (LTDE): the first one is mass function corresponding
to the maximum Deng entropy (𝑚(𝐴) = 2|𝐴|−1

∑

𝐵⊆𝛩 2|𝐵|−1 ), with a slope equal
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to log2(3); the second one is mass function with average distribution
(𝑚(𝐴) = 1

2𝑁−1 ), with a corresponding slope of 1.5; the third one is mass
unction with total uncertainty (𝑚(𝛩) = 1), with a slope equal to 1 [57].

The presence of linearity in Deng entropy has raised two significant
uestions: (1) Are there other mass functions that could result in
linear relationship between Deng entropy and SFOD? (2) Given a

pecific slope, can we find mass functions that yield Deng entropy with
hat slope? Inspired by these questions, this paper conducts an in-depth
xploration of the linear relationship between Deng entropy and SFOD.
he principal contributions of this paper include the discovery of a set
f specific mass functions named power assigned mass function (PAMF)
hich could generate linear type Deng entropy (LTDE). The slope of
eng entropy is nothing else but the information fractal dimension
f mass function. More importantly, we find that for any given slope
ithin the range of 0 to ln 3

ln 2 , at least one mass function that yields
eng entropy corresponding to the given slope can be derived through

he mass function generator (MFG). Furthermore, we also provide
everal proofs, numerical examples, discussions and an error analysis
o validate the effectiveness of our findings.

The structure of the remaining sections is outlined as follows. In
ection 2, we will introduce some preliminary concepts relevant to this
tudy. In Section 3, we will explore the linearity in Deng entropy based
n the two questions posed earlier. Section 4 will provide some numer-
cal examples to validate the effectiveness of our findings. Section 5
ill conduct an analysis of the errors and engage in some discussions.
inally, in Section 6, we will offer a comprehensive summary of the
ntire article.

. Preliminaries

In this section, the concepts of mass function, Deng entropy, the
aximum Deng entropy and information fractal dimension of mass

unction are briefly introduced. We also conduct an initial exploration
f the linearity observed in Deng entropy.

.1. Mass function

Mass function is a foundational concept in Dempster-Shafer evi-
ence theory [2,3], comparable to the probability mass function in the
robability theory [1]. The distinguishing feature lies in the domain of
efinition: the mass function is defined over the power set, while the
robability mass function is defined over the sample space.

efinition 2.1 (Frame of Discernment, FOD). A finite set 𝛩 =
𝜃1, 𝜃2,… , 𝜃𝑁} which contains 𝑁 mutually exclusive elements is de-
ined as the frame of discernment (FOD). The cardinality of the frame
f discernment |𝛩| (|𝛩| = 𝑁) is called the scale of the frame of discern-
ent (SFOD). The family of sets 2𝛩 = {𝛷, {𝜃1},… , {𝜃𝑁} {𝜃1, 𝜃2},… , 𝛩}

that consists of all subsets of 𝛩 (including 𝛩 itself and the empty set
𝛷) is defined as the power set of 𝛩.

Definition 2.2 (Mass Function). For a given FOD 𝛩, a mass function is
defined as a mapping function 𝑚 from 2𝛩 to [0, 1]:

∶ 2𝛩 → [0, 1] (1)

hich is constrained by:

(𝛷) = 0 and
∑

𝐴∈2𝛩
𝑚(𝐴) = 1 (2)

f 𝑚(𝐴) > 0, A is defined as a focal element of 𝑚. A mass function can
lso be called a basic probability assignment (BPA).
2

w

.2. Deng entropy

To measure the uncertainty of mass functions in the power set, Deng
roposed a novel entropy named Deng entropy [34] (also called belief
ntropy) in 2016. Furthermore, Kang and Deng studied the condition
nd the analytic solution of the maximum Deng entropy [38] in 2019.

efinition 2.3 (Deng Entropy). For a given mass function 𝑚 defined on
the FOD 𝛩 = {𝜃1, 𝜃2,… , 𝜃𝑁}, Deng entropy is defined as follows:

𝐸𝐷(𝑚) = −
∑

𝐴∈2𝛩
𝑚(𝐴) ⋅ log2

[

𝑚(𝐴)
2|𝐴| − 1

]

(3)

where 𝐴 is the focal element.

Theorem 2.1 (The Condition of the Maximum Deng Entropy). For a given
mass function 𝑚 defined on the FOD 𝛩 = {𝜃1, 𝜃2,… , 𝜃𝑁}, the maximum
eng entropy is derived if and only if the mass function 𝑚 meets the following
ondition:

(𝐴) = 2|𝐴| − 1
∑

𝐵∈2𝛩
(

2|𝐵| − 1
) , ∀𝐴 ⊆ 𝛩 (4)

Theorem 2.2 (The Analytic Solution of the Maximum Deng Entropy). For a
given FOD 𝛩 = {𝜃1, 𝜃2,… , 𝜃𝑁}, the maximum Deng entropy can be derived
hrough the analytic solution, which is expressed as:

𝐷𝑚𝑎𝑥 = log2

[

∑

𝐹∈2𝛩

(

2|𝐹 | − 1
)

]

(5)

2.3. Information fractal dimension of mass function

Definition 2.4 (Information Fractal Dimension of Mass Function). For
a given mass function 𝑚 defined on the FOD 𝛩 = {𝜃1, 𝜃2,… , 𝜃𝑁}, its
nformation dimension is defined as follows [25,57]:

𝑚 =
𝐸𝐷

log
[

∑

𝑋∈2𝛩
(

2|𝑋| − 1
)𝑚(𝑋)

] (6)

where 𝐸𝐷 is the Deng entropy of the given mass function.

2.4. Some examples that show linearity in Deng entropy

In the last part of this section, we will present some certain mass
functions that show linearity in Deng entropy. Assuming a variable-
scale FOD 𝛩𝑛, 𝑚𝑎 is the mass function corresponding to the maximum
Deng entropy; 𝑚𝑏 is the mass function with average distribution; 𝑚𝑐 is
the mass function with total uncertainty. The specific expressions for
their mass functions are as follows:

𝑚𝑎(𝐹 ) = 2|𝐹 | − 1
∑

𝐵⊆𝛩𝑛
2|𝐵| − 1

, ∀𝐹 ⊆ 𝛩𝑛 (7)

𝑚𝑏(𝐹 ) = 1
2|𝛩𝑛| − 1

, for 𝐹 ≠ 𝛷 (8)

𝑚𝑐 (𝛩𝑛) = 1 (9)

The relevant numerical values are presented in Table 1, where 𝐸𝑎
represents the Deng entropy derived from mass function 𝑚𝑎, while
Diff𝑎 = 𝐸(𝑛)

𝑎 − 𝐸(𝑛−1)
𝑎 (here 𝐸(𝑛)

𝑎 denotes the Deng entropy derived
rom mass function 𝑚𝑎 when |𝛩𝑛| = 𝑛. In particular, when 𝑛 = 0, let
(0)
𝑎 = 0). The same definitions apply to 𝑏 and 𝑐. Moreover, the Entropy-
FOD plot and the Difference-SFOD plot of these mass functions are
llustrated in Figs. 1 and 2. The 𝑥-axis represents the scale of the
rame of discernment (SFOD), while the 𝑦-axis represents Deng entropy
r difference, i.e. 𝐸(𝑛) − 𝐸(𝑛−1). An observable trend is that as the
FOD increases, the difference gradually converges to a constant value.
t suggests that the Deng entropy corresponding to these three mass
unctions exhibits a linear relationship with SFOD, and the value to

(𝑛) (𝑛−1)
hich 𝐸 −𝐸 converges corresponds to the slope. It is interesting
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Table 1
The relevant numerical values of the mass functions.

|𝛩𝑛|
𝑚𝑎 𝑚𝑏 𝑚𝑐

𝐸𝑎 Diff𝑎 𝐸𝑏 Diff𝑏 𝐸𝑐 Diff𝑐
1 0 0 0 0 0 0
2 2.32193 2.32193 2.11328 2.11328 1.58496 1.584961
3 4.24793 1.92600 3.88768 1.77439 2.80735 1.22239
4 6.02237 1.77444 5.54996 1.66229 3.90689 1.09954
5 7.72110 1.69873 7.16103 1.61107 4.95420 1.04731
6 9.37721 1.65611 8.74279 1.58176 5.97728 1.02308
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
48 76.07820 1.58496 70.50000 1.50000 49.00000 1.00000
49 77.66316 1.58496 72.00000 1.50000 50.00000 1.00000
50 79.24813 1.58496 73.50000 1.50000 51.00000 1.00000
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
98 155.32633 1.58496 147.00000 1.50000 98.00000 1.00000
99 156.91129 1.58496 148.50000 1.50000 99.00000 1.00000
100 158.49625 1.58496 150.00000 1.50000 100.00000 1.00000

Fig. 1. The Deng entropy-SFOD plot of these three mass functions (please note that
the 𝑥-axis coordinates start from 1).

Fig. 2. The Difference-SFOD plot of these three mass functions.

that the slopes are equal to the information fractal dimensions of these
mass functions [57]. Therefore, the slope of Deng entropy is nothing
else but the information fractal dimension of mass function.

In this part, we emphasize illustrating the linearity in Deng entropy
intuitively. In Fig. 1, a clear linear pattern is observed. Additionally, in
Table 1 and Fig. 2, the differences between the y-values of adjacent
points on the same line in Fig. 1 are computed. Each of the differ-
ences reveals a gradual convergence to a constant value. Whether the
convergence is transient or enduring, and whether this linearity is a
fortuitous occurrence or an inherent property will be discussed more
comprehensively in Sections 3 and 4.
3

3. Explore the linearity in deng entropy

In this section, we will conduct an in-depth exploration of the
linearity in Deng entropy. Let us now review the two questions we
raised earlier: (1) Are there other mass functions that could result in
a linear relationship between Deng entropy and SFOD? (2) Given a
specific slope, can we find mass functions that yield Deng entropy with
that slope? Firstly, LTDE should be defined.

Definition 3.1 (Linear Type Deng Entropy, LTDE). Given a variable-
scale FOD 𝛩𝑛 = {𝜃1, 𝜃2,… , 𝜃𝑛} and a mass function 𝑚 defined on that
FOD (variable-scale means the SFOD |𝛩𝑛| = 𝑛 is a variable), the Deng
entropy corresponding to the mass function 𝑚 is 𝐸𝐷. As 𝑛 → ∞, if
𝐸𝐷
𝑛 approaches a positive constant value, then the Deng entropy 𝐸𝐷

is defined as a linear type Deng entropy (LTDE).

Definition 3.1 means that: ∃ 𝑘 > 0, ∀ 𝜀 > 0, ∃ 𝑁 ∈ 𝑍+, if 𝑛 > 𝑁 ,
𝐸𝐷
𝑛 − 𝑘| < 𝜀. Next, let us proceed from the analytic solution of the
aximum Deng entropy:

𝐷𝑚𝑎𝑥 = log2

[

∑

𝐹∈2𝛩

(

2|𝐹 | − 1
)

]

= log2

{

|𝛩|

∑

𝑘=0

[(

|𝛩|

𝑘

)

⋅
(

2𝑘 − 1
)

]

}

= log2

{

|𝛩|

∑

𝑘=0

[(

|𝛩|

𝑘

)

⋅ 2𝑘
]

−
|𝛩|

∑

𝑘=0

(

|𝛩|

𝑘

)

}

= log2
(

3|𝛩| − 2|𝛩|

)

(10)

here |𝛩| denotes the cardinality of the FOD 𝛩,
(

|𝛩|

𝑘

)

represents the
ombinatorial number, calculated using the formula

(

|𝛩|

𝑘

)

= |𝛩|!
𝑘!⋅(|𝛩|−𝑘)! .

n the final step of the calculation in Eq. (10), the classic binomial
heorem [58] is applied for simplification.

When |𝛩| → ∞, 3|𝛩| is much larger than 2|𝛩|. Therefore, in Eq. (10),
e can disregard 2|𝛩| and approximate the maximum Deng entropy
sing the following expression:

𝐷𝑚𝑎𝑥 = log2
(

3|𝛩| − 2|𝛩|

)

≈ log2
(

3|𝛩|

)

= log2(3) ⋅ |𝛩| (11)

In Eq. (11), as |𝛩| → ∞, we finally discover the linear relationship
proportional relationship) between the maximum Deng entropy 𝐸𝐷𝑚𝑎𝑥
nd SFOD |𝛩|, with the slope (proportionality factor) being log2(3),
hich is consistent with experimental results in Figs. 1 and 2. Further-
ore, we can use L’Hôpital’s rule to demonstrate that as |𝛩| = 𝑁 → ∞,

he ratio of 𝐸𝐷𝑚𝑎𝑥 to 𝑁 approaches log2(3) (See Proof 1).

roof 1. (Proof for the Ratio log2(3), 𝑁 = |𝛩|.)

lim
→∞

𝐸𝐷𝑚𝑎𝑥
𝑁

= lim
𝑁→∞

log2
(

3𝑁 − 2𝑁
)

𝑁
∞
∞= lim

𝑁→∞

3𝑁 ⋅ln 3−2𝑁 ⋅ln 2
(3𝑁−2𝑁 )⋅ln 2

1

= lim
𝑁→∞

ln 3 − ( 23 )
𝑁 ⋅ ln 2

ln 2 − ( 23 )
𝑁 ⋅ ln 2

= ln 3
ln 2

= log2(3) (12)

Inspired by the reasoning process above, we consider whether mass
functions similar to Eq. (4) can also yield linear type Deng entropy
(LTDE). This idea paves the way for our next research part.
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Fig. 3. Deng entropy-SFOD plot for PAMF corresponding to different values of 𝑏.

3.1. PAMF: new mass functions that result in LTDE

Following the format of Eq. (4), we will provide the definition of
power assigned mass function (PAMF).

Definition 3.2 (Power Assigned Mass Function, PAMF). Given a FOD
𝛩 = {𝜃1, 𝜃2,… , 𝜃𝑁}, for any non-empty subset 𝐴 ⊆ 𝛩, its corresponding
power assigned mass function (PAMF) is as follows:

𝑚𝑃 (𝐴) =
𝑏|𝐴|

∑

𝐹⊆𝛩 𝑏|𝐹 |

(13)

where 𝑏 is a positive constant (real number) named power assigned
coefficient (PAC), 𝐹 is the non-empty subset, |𝐴| and |𝐹 | denote the
cardinality of 𝐴 and 𝐹 . It means distributing 𝑏|𝐴| to each non-empty
subset 𝐴 ⊆ 𝛩, and the sum is the accumulation of these distributions
across all subsets.

Fig. 3 presents an Entropy-SFOD plot for mass functions corre-
sponding to different values of 𝑏. It is evident that these curves all
exhibit strong linearity. In the following part, we will demonstrate the
rationality of this linear phenomenon.

Theorem 3.1. For a given mass function 𝑚 defined on the FOD 𝛩 =
{𝜃1, 𝜃2,… , 𝜃𝑁}, linear type Deng entropy (LTDE) can be derived if the mass
function 𝑚 is a power assigned mass function (PAMF).

Proof 2. (Proof for Theorem 3.1). The PAMF in Eq. (13) can be
rewritten as:

𝑚𝑃 (𝐴) =
𝑏𝑎

∑𝑁
𝑘=1

(𝑁
𝑘

)

⋅ 𝑏𝑘
= 𝑏𝑎

(𝑏 + 1)𝑁 − 1
(14)

here 𝑎 and 𝑁 is the cardinality of 𝐴 and the FOD,
(𝑁
𝑘

)

= 𝑁!
𝑘!⋅(𝑁−𝑘)! .

ubstituting the mass function from Eq. (14) into the Deng entropy
xpression in Eq. (3):

𝐷(𝑚𝑃 ) = −
∑

𝐴∈2𝛩
𝑚𝑃 (𝐴) ⋅ log2

[

𝑚𝑃 (𝐴)
2|𝐴| − 1

]

= −
𝑁
∑

𝑘=1

(

𝑁
𝑘

)

⋅
𝑏𝑘

(𝑏 + 1)𝑁 − 1
log2

⎡

⎢

⎢

⎣

𝑏𝑘

(𝑏+1)𝑁−1

2𝑘 − 1

⎤

⎥

⎥

⎦

=

∑𝑁
𝑘=1

{

(𝑁
𝑘

)

⋅ 𝑏𝑘 ⋅ log2
[

(𝑏 + 1)𝑁 − 1
]

−
(𝑁
𝑘

)

⋅ 𝑏𝑘 ⋅ log2
(

𝑏𝑘

2𝑘−1

)}

(𝑏 + 1)𝑁 − 1

= log2
[

(𝑏 + 1)𝑁 − 1
]

−

∑𝑁
𝑘=1

[

(𝑁
𝑘

)

⋅ 𝑏𝑘 ⋅ log2
(

𝑏𝑘

2𝑘−1

)]

(𝑏 + 1)𝑁 − 1
(15)
4

when 𝑁 is sufficiently large, the ‘−1’ term in Eq. (15) can be neglected,
and thus it can be rewritten as:

𝐸𝐷(𝑚𝑃 ) ≈ 𝑁 ⋅ log2(𝑏 + 1) −

∑𝑁
𝑘=1

[

(𝑁
𝑘

)

⋅ 𝑏𝑘 ⋅ 𝑘 ⋅ log2
(

𝑏
2

)]

(𝑏 + 1)𝑁
(16)

By comparing Eq. (15) with Eq. (16), it is evident that after approxi-
ation, 𝐸𝐷 in Eq. (16) will be greater than that in Eq. (15) when 𝑏 > 2.

n Section 5, we will conduct further analysis of the error introduced
uring the approximation process.

By applying the binomial theorem [58], we can derive the following
xpression:

𝑥 + 1)𝑁 =
𝑁
∑

𝑘=1

[(

𝑁
𝑘

)

⋅ 𝑥𝑘
]

+ 1 (17)

hen take the derivative of both sides of Eq. (17) with respect to the
ariable 𝑥:

⋅ (𝑥 + 1)𝑁−1 =
𝑁
∑

𝑘=1

[(

𝑁
𝑘

)

⋅ 𝑘 ⋅ 𝑥𝑘−1
]

(18)

ext, multiply both sides of Eq. (18) by 𝑥:

⋅𝑁 ⋅ (𝑥 + 1)𝑁−1 =
𝑁
∑

𝑘=1

[(

𝑁
𝑘

)

⋅ 𝑘 ⋅ 𝑥𝑘
]

(19)

ccording to Eq. (19), Eq. (16) can be rewritten as:

𝐷(𝑚𝑃 ) = 𝑁 ⋅ log2(𝑏 + 1) −
log2

(

𝑏
2

)

⋅𝑁 ⋅ 𝑏 ⋅ (𝑏 + 1)𝑁−1

(𝑏 + 1)𝑁

= 𝑁 ⋅ log2(𝑏 + 1) − log2
( 𝑏
2

)

⋅𝑁 ⋅
𝑏

𝑏 + 1

=
[

log2(𝑏 + 1) − log2
( 𝑏
2

)

⋅
𝑏

𝑏 + 1

]

⋅𝑁 (20)

where 𝑁 is the cardinality of the FOD, i.e. the SFOD |𝛩|. According
to Eq. (20), the linear relationship between Deng entropy and SFOD is
evident. So it is proved that linear type Deng entropy can be derived if
the mass function 𝑚 is a power assigned mass function. The proof for
Theorem 3.1 is completed.

3.2. MFG: generating mass functions from a given slope

From Eq. (20), we can observe that the slope of the Deng entropy
derived from the PAMF is exclusively determined by the power assigned
coefficient 𝑏. This implies that for a given slope of the LTDE, we can
inversely deduce the value of 𝑏, and further derive the PAMF.

Definition 3.3 (Mass Function Generator, MFG). For a real number 𝑏 ∈
(0,+∞), the mass function generator (MFG) is defined by the following
function:

𝐺(𝑏) = log2(𝑏 + 1) − log2
( 𝑏
2

)

⋅
𝑏

𝑏 + 1
(21)

where 𝑏 is the power assigned coefficient (PAC), 𝐺(𝑏) could be the given
slope. Fig. 4 shows the Slope-PAC plot of the MFG when 𝑏 ∈ (0, 20).

Theorem 3.2. Given a linear type Deng entropy (LTDE) with a certain
slope 𝑘, for any 𝑘 ∈ (0, log2 3], at least one power assigned mass function
(PAMF) that yields Deng entropy corresponding to the slope can be derived
through the mass function generator (MFG). Furthermore:

• If 𝑘 ∈ (0, 1] or 𝑘 = log2(3), one power assigned mass function can be
derived;

• If 𝑘 ∈ (1, log2 3), two power assigned mass functions can be derived.

Proof 3. (Proof for Theorem 3.2). From Eqs. (20) and (21) we can
know:

𝑘 = 𝐺(𝑏) = log (𝑏 + 1) − log
( 𝑏)

⋅
𝑏 (22)
2 2 2 𝑏 + 1
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Fig. 5. The plot of 𝐺′(𝑏).

Eq. (22) can be rewritten as:

𝐺(𝑏) = log2(𝑏 + 1) − log2
( 𝑏
2

)

+ 1
𝑏 + 1

⋅ log2
( 𝑏
2

)

(23)

then take the derivative of 𝐺(𝑏) with respect to 𝑏:

′(𝑏) =
d𝐺(𝑏)
d𝑏

= 1
(𝑏 + 1) ⋅ ln 2

− 1
𝑏 ⋅ ln 2

− 1
(𝑏 + 1)2

⋅ log2
( 𝑏
2

)

+ 1
𝑏 + 1

⋅
1

𝑏 ⋅ ln 2

=
𝑏 − (𝑏 + 1) + 1
𝑏 ⋅ (𝑏 + 1) ⋅ ln 2

− 1
(𝑏 + 1)2

⋅ log2
( 𝑏
2

)

= − log2
( 𝑏
2

)

⋅
1

(𝑏 + 1)2
(24)

The plot of 𝐺′(𝑏) is shown in Fig. 5. Combining Fig. 5 with Eq. (24)
rovides the following information:

• When 𝑏 ∈ (0, 2), 𝐺′(𝑏) > 0;
• When 𝑏 = 2, 𝐺′(𝑏) = 0;
• When 𝑏 ∈ (2,+∞), 𝐺′(𝑏) < 0;

Further deductions can be made based on the properties of the
erivative:

• When 𝑏 ∈ (0, 2), 𝐺(𝑏) is monotonically increasing;
• When 𝑏 = 2, 𝐺(𝑏) achieves its global maximum value log2(3);
• When 𝑏 ∈ (2,+∞), 𝐺(𝑏) is monotonically decreasing.

Moreover:

lim
→+∞

𝐺(𝑏) = lim
𝑏→+∞

log2(𝑏 + 1) − log2
( 𝑏
2

)

= lim log (𝑏 + 1) − log (𝑏) + 1
5

𝑏→+∞ 2 2
= 1 (25)

lim
𝑏→0+

𝐺(𝑏) = lim
𝑏→0+

log2
( 𝑏
2

)

⋅
−𝑏
𝑏 + 1

= lim
𝑏→0+

− log2
(

𝑏
2

)

1 + 1
𝑏

∞
∞= lim

𝑏→0+

1
𝑏⋅ln 2
1
𝑏2

= lim
𝑏→0+

𝑏
ln 2

= 0 (26)

here 𝑏 → 0+ implies that 𝑏 approaches 0 from the positive side.
hen 𝑏 ∈ (0, 1000), the plot of 𝐺(𝑏) is shown in Fig. 6. Therefore,

s inferred from Fig. 6 and Eqs. (22), (25), (26), for a certain slope
∈ (0, log2 3], when inputting 𝑘 into the MFG 𝐺(𝑏), assuming 𝐺(𝐶) = 1
𝐶 is a constant, the value of 𝐶 will be discussed in Example 4.2), the
ollowing conclusions can be drawn:

• If 𝑘 ∈ (0, 1] or 𝑘 = log2(3), then it is possible to obtain a value of
𝑏 ∈ (0, 𝐶] or 𝑏 = 2 such that 𝐺(𝑏) = 𝑘;

• If 𝑘 ∈ (1, log2 3), then values of 𝑏1 ∈ (𝐶, 2) and 𝑏2 ∈ (2,+∞) can be
found such that 𝐺(𝑏1) = 𝐺(𝑏2) = 𝑘.

The proof for Theorem 3.2 is completed. This theorem is intuitive
ecause when 𝑏 → ∞, the PAMF tends to make 𝑚(𝛩) = 1, corre-
ponding to the situation of total uncertainty. In this scenario, the
lope 𝑘 of the LTDE approaches 1, consistent with Fig. 2. Conversely,
hen 𝑏 is small, the PAMF tends to allocate mass to individual subsets
{𝜃1}, {𝜃2},… , {𝜃𝑁}), resulting in lower uncertainty, and hence, the
TDE has a smaller slope. Moreover, when 𝑏 = 2, the slope reaches
ts global maximum value of 𝑘 = log2(3), corresponding to the situation
f maximum Deng entropy, in line with Fig. 2 and Eq. (11).

The convexity property of a function is also a significant mathemat-
cal property [23,49]. We can examine the convexity property of 𝐺(𝑏)
y checking the sign of its second derivative:

′′(𝑏) =
d2𝐺(𝑏)
d𝑏2

=
d𝐺′(𝑏)
d𝑏

= 2
(𝑏 + 1)3

⋅ log2
( 𝑏
2

)

− 1
𝑏 ⋅ ln 2

⋅
1

(𝑏 + 1)2

=
2 ⋅ ln

(

𝑏
2

)

ln 2 ⋅ (𝑏 + 1)3
− 1

ln 2 ⋅ 𝑏 ⋅ (𝑏 + 1)2

=
2𝑏 ⋅ ln

(

𝑏
2

)

− (𝑏 + 1)
(27)
ln 2 ⋅ 𝑏 ⋅ (𝑏 + 1)3
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Since 𝑏 is a positive number, the denominator of Eq. (27) is greater than
0. Taking the numerator separately, define the function 𝑓 (𝑏) as:

𝑓 (𝑏) = 2𝑏 ⋅ ln
( 𝑏
2

)

− 𝑏 − 1 (28)

hen take the derivative of 𝑓 (𝑏) with respect to 𝑏:

′(𝑏) =
d𝑓 (𝑏)
d𝑏

= 2 ⋅ ln
( 𝑏
2

)

+ 2𝑏 ⋅ 1
𝑏
− 1

= 2 ⋅ ln
( 𝑏
2

)

+ 1 (29)

In Eq. (29), it is obvious that 𝑓 ′(𝑏) is monotonically increasing
within the interval 𝑏 ∈ (0,+∞), having a unique zero point at 𝑏′0 =

2𝑒−
1
2 . Furthermore, the analysis reveals that the function 𝑓 (𝑏) is mono-

tonically decreasing in the interval 𝑏 ∈ (0, 2𝑒−
1
2 ) and monotonically

increasing in the interval 𝑏 ∈ (2𝑒−
1
2 ,+∞). When 𝑏 → 0+, it can be

calculated that lim𝑏→0+ = −1 by using L’Hôpital’s rule. Let 𝑓 (𝑏) =
0, the unique zero point of 𝑓 (𝑏) can be solved as (3.7657, 0) (𝑏0 ≈
3.7656697…). The plot of 𝑓 (𝑏) is shown in Fig. 7.

Fig. 7. The plot of 𝑓 (𝑏).

Therefore, the plot of 𝐺′′(𝑏) is shown in Fig. 8 and the following
conclusions can be drawn:

• When 𝑏 ∈ (0, 3.7657), 𝐺′′(𝑏) < 0, indicating that 𝐺(𝑏) is concave
with respect to 𝑏;

• When 𝑏 ∈ (3.7657,+∞), 𝐺′′(𝑏) > 0, indicating that 𝐺(𝑏) is convex
with respect to 𝑏.
6

Fig. 8. The plot of 𝐺′′(𝑏).

. Numerical examples

xample 4.1. Given a PAMF with the PAC 𝑏 = 1, solve the slope 𝑘 of the
TDE corresponding to that PAMF.

By using Definition 3.2, the PAMF could be expressed as:

𝑃 = 1
2𝑁 − 1

(30)

bviously, Eq. (30) is the situation of average distribution. According
o Eq. (20), let 𝑏 = 1, then:

= log2(1 + 1) − log2
( 1
2

)

⋅
1

1 + 1
= 1.5 (31)

This result is consistent with Fig. 2. According to Theorem 3.2, since
𝑘 = 1.5 ∈ (1, log2 3), there should exist another PAMF with the PAC
𝑏′ ∈ (2,+∞), such that the slope 𝑘 of the LTDE corresponding to that
PAMF is also 1.5. 𝑏′ could be derived by inputting 𝑘 = 1.5 into the MFG:

log2(𝑏 + 1) − log2
( 𝑏
2

)

⋅
𝑏

𝑏 + 1
= 1.5 (32)

The solution to Eq. (32) is: 𝑏1 = 1, 𝑏2 = 4.5575580. Use the PAMF
with the PAC 𝑏 = 4.5575580, calculate its corresponding Deng entropy.
The Entropy-SFOD plot for that PAMF is shown in Fig. 9. It is obvious
that the Deng entropy and the SFOD exhibit a strong linear relationship.
The slope of the Deng entropy is 1.5, which is in line with theoretical

calculation.
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Fig. 9. The Entropy-SFOD plot for the PAMF with 𝑏 = 4.5575580 (please note that the
-axis coordinates start from 1).

xample 4.2. Given a slope 𝑘 = 1, derive the mass function(s) which could
ield Deng entropy corresponding to that slope.

According to Theorem 3.2, since 𝑘 = 1 ∈ (0, 1], there should exist
ne PAMF. Input 𝑘 = 1 into the MFG:

og2(𝑏 + 1) − log2
( 𝑏
2

)

⋅
𝑏

𝑏 + 1
= 1 (33)

The solution to Eq. (33) is: 𝑏 = 0.2938154. The Entropy-SFOD plot
for the PAMF with 𝑏 = 0.2938154 is shown in Fig. 10. Therefore, the
value of the constant 𝐶 in Proof 3 is 0.2938154.

Fig. 10. The Entropy-SFOD plot for the PAMF with 𝑏 = 0.2938154.

Example 4.3. Given a PAMF with the PAC 𝑏 = 10, solve the slope 𝑘 of the
LTDE corresponding to that PAMF.

Let 𝑏 = 10 in Eq. (20):

𝑘 = log2(10 + 1) − log2
( 10
2

)

⋅
10

10 + 1
= 1.3485879 (34)

The Entropy-SFOD plot for the PAMF with 𝑏 = 10 is shown in Fig. 11.
Similarly, another 𝑏 = 0.6293296 which leads to the LTDE with slope 𝑘 =
1.3485879 could be derived through the MFG in Eq. (21). The result is
consistent with theoretical calculation, Theorem 3.1 and Theorem 3.2.

Example 4.4. Given a slope 𝑘 = ln 2, derive the mass function(s) which
7

could yield Deng entropy corresponding to that slope. l
Fig. 11. The Entropy-SFOD plot for the PAMF with 𝑏 = 10.

According to Theorem 3.2, since 𝑘 = ln 2 ∈ (0, 1], there should exist
ne PAMF with PAC 𝑏 ∈ (0, 0.2938154]. Input 𝑘 = ln 2 into the MFG:

og2(𝑏 + 1) − log2
( 𝑏
2

)

⋅
𝑏

𝑏 + 1
= ln 2 (35)

The solution to Eq. (33) is: 𝑏 = 0.1514495. The Entropy-SFOD plot for
the PAMF with 𝑏 = 0.1514495 is shown in Fig. 12. It can be observed
that in this example, when SFOD = 100, there is a slight deviation
between the calculated slope and the given slope. This deviation may
be attributed to the SFOD not being sufficiently large because the
deviation is reduced as the SFOD increases to 150. Further analysis
regarding the error analysis will be presented in Section 5.

Fig. 12. The Entropy-SFOD plot for the PAMF with 𝑏 = 0.1514495.

. Error analysis and discussion

Analyzing the provided numerical examples, the errors in approx-
mating Deng entropy with a straight line passing through the origin
rimarily originate from the approximation in Eq. (16) and the errors
ntroduced by software calculations. The errors are more pronounced
hen SFOD is small and may exhibit some variability. Nevertheless,
s SFOD increases incrementally, the errors will diminish. With a
ufficiently large SFOD, the errors become negligible and can be safely
isregarded.

We select some of the examples in Section 4 and plotted the LTDE
long with its corresponding fitted straight lines, as shown in Fig. 13. In
his figure, the y-coordinates of the scattered points represent the Deng
ntropy generated by PAMF with different PAC 𝑏, while the dashed
ines are straight lines passing through the origin with different slope
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Fig. 13. The Entropy-SFOD plot for the PAMFs with different PAC 𝑏 and straight lines passing through the origin with different slope 𝑘.
Fig. 14. The Difference-SFOD plot for the difference between the fitted values (use straight lines for fitting) and actual Deng entropy values.
s

a

𝐸

, which are used for fitting the LTDE. It is noticeable that there is
oorer fitting when SFOD is relatively small, but more favorable fitting
esults are achieved with larger SFOD. To provide a more intuitive
epresentation of the discrepancy between the actual Deng entropy
alues and their fitted values, Fig. 14 illustrates the difference between
he two, namely: 𝑘 ⋅ 𝑛−𝐸𝐷 plot, where 𝑛 is the SFOD. It is evident that
or smaller values of 𝑏 and SFOD, the difference exhibits fluctuations
round 0. However, as SFOD steadily increases, the difference gradually
onverges to 0. Consequently, it serves to validate the linearity in Deng
ntropy and the effectiveness of our proposed methodology.

In thermodynamics, entropy is a function that describes the thermo-
ynamic state of a system. A specific system state can yield the entropy
orresponding to that state, but a specific entropy cannot determine
he system’s state. Similarly, for a given FOD, there exists a one-to-
any relationship between entropy and mass functions. A specific mass

unction corresponds to a specific entropy, but a particular entropy
an correspond to multiple mass functions. Therefore, it is challenging
o deduce mass functions from a particular entropy. However, in this
aper, using the MFG, we demonstrate that it is possible to derive at
east one mass function from a LTDE. This approach provides a new
erspective for exploring unknown systems.

Linearity, owing to its simplicity, provides a significant advantage
n entropy calculation within the context of the LTDE. For instance,
onsider a sufficiently large FOD, such as 𝑁 = 1010. According to

1010
8

q. (3), when calculating Deng entropy, it needs to compute 2 data
ets, with each data set requiring the computation of log2
[

𝑚(𝐴)
2|𝐴|−1

]

. Such
calculations are exceedingly intricate and computationally demanding,
posing a formidable challenge in terms of computational resources. In
contrast, with the introduction of the LTDE, these calculations become
remarkably simplified. Once the slope is determined, a single multipli-
cation suffices to obtain the entropy. The linearity greatly reduces the
computational burden associated with Deng entropy, offering a more
efficient and manageable approach, especially when dealing with the
large FOD. Here is a more specific example shown in Example 5.1.

Example 5.1. Given a FOD 𝛩𝑛 = {𝜃1, 𝜃2,… , 𝜃𝑁} and a mass function
𝑚𝑙 defined on that FOD within a system. When 𝑁 = 1010 and 𝑚𝑙(𝐴) =

8|𝐴|
∑

𝐹⊆𝛩 8|𝐹 |

for any non-empty subsets 𝐴, 𝐹 ⊆ 𝛩, measure the uncertainty in
the system under this mass function.

We can use Deng entropy to measure the uncertainty in the system.
Since the cardinality of the FOD is 1010, the cardinality of the power set
would be 21010 . According to Eq. (3), Deng entropy can be calculated
s follows:

𝐷(𝑚𝑙) = −
∑

𝐴∈2𝛩

8|𝐴|
∑

𝐹⊆𝛩 8|𝐹 |

⋅ log2

⎡

⎢

⎢

⎢

⎣

8|𝐴|
∑

𝐹⊆𝛩 8|𝐹 |

2|𝐴| − 1

⎤

⎥

⎥

⎥

⎦

(36)

The calculation of Eq. (36) faces two main challenges. The first
challenge is the summation of (21010 −1) terms, which is a large number
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of terms. The second challenge is the computation of 81010 , which
introduces substantial numerical challenges due to the exceedingly
large value involved. Consequently, using Eq. (36) for this calculation
would become extremely complex. Nevertheless, it is worth noting that
𝑚𝑙 is a PAMF, and according to Theorem 3.1, the corresponding Deng
entropy would be LTDE. Hence, the calculation can be simplified using
Eq. (20) as follows:

𝐸𝐷(𝑚𝑙) =
[

log2(𝑏 + 1) − log2
( 𝑏
2

)

⋅
𝑏

𝑏 + 1

]

⋅𝑁

=
[

log2(8 + 1) − log2
( 8
2

)

⋅
8

8 + 1

]

⋅ 1010

≈ 1.3921 × 1010 (37)

Therefore, the uncertainty of the system can be rapidly computed
sing LTDE, significantly reducing computational complexity. LTDE
roves to be a crucial computational tool, particularly when dealing
ith a large FOD.

The presence or absence of linearity depends on what is considered
s a crucial aspect to be discussed. A essential determinant is how the
nformation measure is defined. For instance, linearity is non-existent in
hannon entropy because the maximum Shannon entropy, as an upper
ound, can only reach log(𝑛). Therefore, a necessary condition for the
xistence of linearity is that the information measure, represented by
ntropy 𝐸 with its corresponding maximum entropy 𝐸𝑚𝑎𝑥, and SFOD 𝑛,
𝑘 > 0, such that 𝑛 → ∞, 𝐸𝑚𝑎𝑥 > 𝑘 ⋅ 𝑛. Another significant determinant
s how the mass function is defined. Within the framework of Deng
ntropy as the measure of information, consider the following two mass
unctions:

1(𝐹 ) =

{

1
𝑛 , if |𝐹 | = 1
0 , otherwise

(38)

2(𝐹 ) =

{ 2
𝑛⋅(𝑛−1) , if |𝐹 | = 2

0 , otherwise
(39)

ccording to Eq. (3), it can be calculated that:

𝐷(𝑚1) = log2(𝑛) (40)

𝐷(𝑚2) = log2

[

3𝑛 ⋅ (𝑛 − 1)
2

]

(41)

The Entropy-SFOD plot of these mass functions is shown in Fig. 15.
t is evident that when the mass function follows either Eq. (38) or
q. (39), the corresponding Deng entropy does not exhibit linearity
roperty. It implies that the linearity property in Deng entropy is not
niversal, since the definition of the mass function would influence the
anifestation of linearity.

Fig. 15. The Deng entropy-SFOD plot of these two mass functions (please note that
the 𝑥-axis coordinates start from 2).

What is the implicit meaning of linearity in Deng entropy? This
is an open issue undoubtedly. The proposed information dimension
9

d

based on Deng entropy also shows a strong linearity [57]. The slope
is regarded as a dimension. It inspires us to present a hypothesis: Is
there an equation relating entropy, dimension, and SFOD, which can
be expressed as:

𝐸 = 𝐷 ∗ 𝑓 (𝑛) (42)

where 𝐸 denotes entropy, 𝐷 stands for information dimension, 𝑓 (𝑛)
represents a function that depends on the SFOD. In Shannon entropy
𝑓 (𝑛) = log(𝑛), while in Deng entropy 𝑓 (𝑛) = 𝑛. With a fixed information
dimension, the entropy increases with SFOD in a manner determined
by the scale associated with the information dimension. Therefore, 𝐷
erves as a scale that quantifies the rate of information growth.

In conclusion, the linearity in Deng entropy remains a subject that
emands further investigation. In the future work, we will conduct a
ore comprehensive and in-depth exploration of this topic.

. Conclusion

Linearity plays a crucial role in various domains. Intriguingly, lin-
arity can also be observed in Deng entropy-related research, including
he maximum Deng entropy and information dimension based on Deng
ntropy. In this paper, we conduct an in-depth exploration of the
inear relationship between Deng entropy and the scale of the frame
f discernment (SFOD). The primary outcomes and contributions can
e summarized as follows:

• The linearity in Deng entropy is systematically reviewed and
discussed.

• The slope of Deng entropy is nothing else but the information
fractal dimension of mass function.

• The linear type Deng entropy (LTDE) is defined.
• A set of specific mass functions named power assigned mass

function (PAMF) which could generate LTDE are discovered.
• The mass function generator (MFG) which could derive mass

functions corresponding to a LTDE with a given slope is pre-
sented.

• Some proofs, numerical examples and an error analysis are pre-
sented to validate the effectiveness of our findings.
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