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A B S T R A C T

Random permutation set (RPS) is a recently introduced set based on the Dempster–Shafer evidence theory,
which considers all possible permutations of the elements within a given set. The information dimension is a
significant fractal dimension which plays a vital role in the information theory. Nevertheless, how to develop
the information dimension of a specific permutation mass function in RPS remains an unresolved problem. To
solve this problem, we propose a new dimension named information fractal dimension of Random Permutation
Set. Moreover, several properties of the proposed dimension are explored and numerical examples are provided
to illustrate its effectiveness. The research discovers an interesting property related to the permutation mass
function corresponding to the maximum RPS entropy: its information dimension is 2, which is equivalent to
the fractal dimension of Brownian motion and Peano curve.
1. Introduction

In the information theory, the measurement of uncertainty holds
significant importance. A wide range of theories have been developed
to cope with uncertainty, including probability theory [1], Dempster–
Shafer evidence theory (evidence theory) [2,3], Z-numbers [4], rough
sets [5], fuzzy sets [6], D numbers [7] and complex evidence the-
ory [8–10]. These theories have found practical application in nu-
merous fields, such as classification [11,12], decision making [13],
risk assessment [14,15], pattern classification [16] and group decision
making [17,18]. Entropy, as a powerful tool for measuring the un-
certain degree of information, has led to the development of various
related theories, including Shannon entropy [19], Rényi entropy [20],
fuzzy entropy [21], Deng entropy [22], complex entropy [23], Tsallis
entropy [24], and has extended to information quality [25], complex
systems [26], divergence measure [27–29], network theory [30,31],
mutual information matrix [32,33] and various other domains [34,35].
Of particular interest is the Deng entropy [22], which serves as an
effective parameter for measuring uncertainty in evidence theory, and
has thus sparked extensive attention regarding its properties [36,37],
generalizations [38,39] and applications [40].

Set theory stands as a fundamental theory which describes the
collections of objects or elements [41]. The majority of existing theories
are grounded in set theory, including concepts like the sample space in
probability theory [1] and the power set in evidence theory [2,3]. A
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recent study has proposed a new perspective on the power set, sug-
gesting that it represents the complete set of combinations attainable
from the elements within a frame of discernment [42]. Inspired by
this interpretation, a novel set named random permutation set (RPS) is
presented, which represents the complete set of permutations attainable
from the elements within a frame of discernment [43]. RPS has found
applications in diverse fields, including uncertainty measurement [44,
45], pattern recognition [46,47] and game theory [48].

Fractal dimension is a measure used to quantify the complexity of
fractal structures. It is determined by analyzing how the scale change
and quantity change of a fractal image are interrelated [49]. Generally
speaking, a higher fractal dimension implies a more intricate and
complex structure [50,51]. Fractal dimension has found practical use in
a wide range of fields associated with fractal theory, including complex
networks [52,53], non-linear dynamic systems [54,55] and aggregate
systems [56]. Each interesting curve has its own fractal dimension. For
example, the Hausdorff dimension [57] of the trajectory of Brownian
motion on a plane is equal to 2 [58], the Sierpinski triangle has a
fractal dimension of 𝑙𝑛3∕𝑙𝑛2 [59,60] while the Peano curve has a
fractal dimension of 2 [49]. The information dimension [61,62], a form
of fractal dimension, holds significant importance in the analysis of
probability distributions [63].

Recently, a new kind of dimension based on fractal theory and Deng
entropy [22] has been proposed [64]. However, how to develop an
information dimension of a specific permutation mass function in RPS
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remains an unresolved problem. To resolve this problem, we propose an
information dimension of RPS based on RPS entropy. The proposed di-
mension is compatible with both Rényi information dimension [61,62]
and information fractal dimension of mass function [64]. Additionally,
multiple numerical examples are offered to exemplify the utilization
of the proposed dimension. By analyzing these numerical examples,
an intriguing discovery has been made: the information dimension of
permutation mass function corresponding to the maximum RPS entropy
is 2, which is equivalent to the fractal dimension of Brownian motion
and Peano curve. This novel discovery establishes a link between
information theory and fractal geometry, with important implications
for both fields.

The subsequent sections of this article are structured as follows.
Section 2 makes an introduction to the preliminary concepts and back-
ground information. Section 3 proposes the information dimension of
RPS and define several distribution mode in RPS. Section 4 applies mul-
tiple numerical examples to exemplify the utilization of the proposed
dimension. Section 5 offers a concise conclusion.

2. Preliminaries

How to model and measure the uncertainty and dynamics of the
system have attracted a lot of attentions, with research focusing on
areas such as networks [65,66], chaotic attractors [67], regret mini-
mization [68], multi-agent learning [69] and others [70]. Some intro-
ductions to the preliminary concepts and background information is
provided in this section, including RPS, RPS entropy, maximum RPS
entropy and information dimension.

2.1. Random permutation set

Random permutation set (RPS) is a recently introduced set which
is comprised of the permutation event space (PES) and permutation
mass function (PMF) [43]. To provide an overview of RPS, we introduce
some fundamental definitions below.

Definition 2.1 (Permutation Event Space). Consider a fixed set 𝛺 consist-
ing of 𝑁 elements that are mutually exclusive and collectively exhaus-
tive, denoted as {𝜔1, 𝜔2,… , 𝜔𝑛}, the permutation event space (PES)
is defined as the set which is comprised of all possible permutations of
the elements in 𝛺. It can be expressed as follows:

𝑃𝐸𝑆(𝛺) = {𝑀𝑖𝑗 |𝑖 = 0, 1, 2,… , 𝑁 ; 𝑗 = 1, 2,… , 𝑃 (𝑁, 𝑖)}

= {∅, {𝜔1},… , {𝜔𝑁−1}, {𝜔𝑁}, {𝜔1, 𝜔2}, {𝜔2, 𝜔1},… , {𝜔𝑁−1,

𝜔𝑁}, {𝜔𝑁 , 𝜔𝑁−1},… , {𝜔1, 𝜔2,… , 𝜔𝑁},… , {𝜔𝑁 , 𝜔𝑁−1,… , 𝜔1}}

(1)

ere, 𝑃 (𝑁, 𝑖) refers to the 𝑖-permutation of 𝑁 , which is defined as
(𝑁, 𝑖) = 𝑁!

(𝑁−𝑖)! . In the permutation event space (PES), each permuta-
tion event 𝑀𝑖𝑗 represents a possible 𝑖-permutation of 𝑁 elements in 𝛺.
The index 𝑖 represents the cardinality of 𝑀𝑖𝑗 , and the index 𝑗 signifies
he existence of 𝑗 distinct 𝑖-permutations.

efinition 2.2 (Random Permutation Set). Consider a fixed set 𝛺 con-
sisting of 𝑁 elements that are mutually exclusive and collectively
exhaustive, denoted as {𝜔1, 𝜔2,… , 𝜔𝑛}, the random permutation set
(RPS) is a set composed of pairs of elements, which can be defined as
follows:

𝑅𝑃𝑆(𝛺) = {⟨𝑀,ℳ(𝑀)⟩|𝑀 ∈ 𝑃𝐸𝑆(𝛺)} (2)

The permutation mass function (PMF), denoted as ℳ, is defined by
the following expression:

ℳ ∶ 𝑃𝐸𝑆(𝛺) → [0, 1] (3)

the constraints are ℳ(∅) = 0 and ∑

ℳ(𝑀) = 1.
2

𝑀∈𝑃𝐸𝑆(𝛺) w
RPS exhibits compatibility with both evidence theory [2,3] and
probability theory [1]. The PES of the RPS degenerates into the power
set when the sequence of the elements in the permutation events are
not considered, and it further degenerates into the sample space in the
case where each permutation event includes only one single element.
Likewise, under the same conditions, the PMF of RPS can degenerate
into a BPA and a probability distribution [43].

2.2. RPS entropy and maximum RPS entropy

Recently, RPS entropy has been introduced as a measure of un-
certainty for RPS [44]. Additionally, RPS maximum entropy and its
corresponding PMF condition have been proposed and proofed [45].

Definition 2.3 (RPS Entropy). Consider a RPS denoted as 𝑅𝑃𝑆(𝛺) =
{⟨𝑀𝑖𝑗 ,ℳ(𝑀𝑖𝑗 )⟩|𝑀𝑖𝑗 ∈ 𝑃𝐸𝑆(𝛺)}, the RPS entropy is by the following
expression:

𝐻𝑅𝑃𝑆 (ℳ) = −
𝑁
∑

𝑖=1

𝑃 (𝑁,𝑖)
∑

𝑗=1
ℳ(𝑀𝑖𝑗 ) log

(ℳ(𝑀𝑖𝑗 )
𝐹 (𝑖) − 1

)

(4)

here, 𝑃 (𝑁, 𝑖) refers to the 𝑖-permutation of 𝑁 . 𝐹 (𝑖) is the sum from
-permutation of 𝑖 to 𝑖-permutation of 𝑖, which can be calculated as
(𝑖) =

∑𝑖
𝑎=0 𝑃 (𝑖, 𝑎) =

∑𝑖
𝑎=0

𝑖!
(𝑖−𝑎)! .

RPS entropy exhibits compatibility with both Shannon entropy [19]
and Deng entropy [22]. The RPS entropy degenerates into Deng entropy
when the sequence of the elements in the permutation event is not
considered, and it further degenerates into Shannon entropy in the case
where each permutation event is constrained to include only one single
element [44].

Definition 2.4 (The PMF Condition For Maximum Entropy Of RPS). The
maximum entropy of RPS is attained only when the PMF meets the
following condition:

ℳ(𝑀𝑖𝑗 ) =
𝐹 (𝑖) − 1

∑𝑁
𝑖=1[𝑃 (𝑁, 𝑖)(𝐹 (𝑖) − 1)]

(5)

It can be derived from this definition that there is a positive correla-
tion between the cardinality of a certain permutation event and the
magnitude of its corresponding PMF value [45].

Definition 2.5 (The Analytic Solution For Maximum Entropy Of RPS).
The maximum entropy of a RPS can be obtained through an analytical
solution, which is expressed as:

𝐻𝑚𝑎𝑥−𝑅𝑃𝑆 = log

( 𝑁
∑

𝑖=1
[𝑃 (𝑁, 𝑖)(𝐹 (𝑖) − 1)]

)

(6)

2.3. Information dimension

Information dimension belongs to the family of fractal dimensions,
which can be used to describe the behavior of chaotic attractors [61,62,
71]. Recently, a new dimension named information fractal dimension
has been proposed to deal with mass function [64]. We will briefly
introduce some basic definitions about information dimension below.

Definition 2.6 (Rényi Dimension). Let 𝑍 be a discrete random variable
and 𝑟 ∈ R⩾0, the Rényi dimension of order 𝑟 is defined as follows [61,
71]:

𝐷𝑟(𝑍) = lim
𝑎→0

1
1−𝑟 log

∑𝑁
𝑖=1 𝑃𝑖

𝑟

− log 𝑎
(7)

where the numerator is Rényi entropy of order 𝑟 [20], 𝑃𝑖 is the proba-
bility of the event {𝑍 = 𝑧𝑖}, 𝑁 = 𝑁(𝑎) is the total number of 𝑎-boxes

ith 𝑃 > 0.
𝑖
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As the order of the Rényi dimension approaches 1, the denominator
of 1

1−𝑟 approaches 0. This condition can be addressed by applying
L’Hôpital’s rule:

lim
𝑎→0

1
1−𝑟 log

∑𝑁
𝑖=1 𝑃𝑖

𝑟

− log 𝑎
𝑟→1
⟶ lim

𝑎→0

∑𝑁
𝑖=1 𝑃𝑖 log𝑃𝑖

log 𝑎
(8)

the 1-order Rényi dimension in Eq. (8) is defined as information
dimension [62]:

𝐷𝑃 = lim
𝑎→0

∑𝑁
𝑖=1 𝑃𝑖 log𝑃𝑖

log 𝑎
= lim

𝑛→∞

−
∑𝑁

𝑖=1 𝑃𝑖 log𝑃𝑖

log 𝑛
(9)

here the numerator is Shannon entropy 𝐻𝑆 [19].

efinition 2.7 (Information Dimension Of Mass Function). For a frame-
work of discernment 𝛺, the power set is 2𝛺 = {𝑀1,𝑀2,… ,𝑀2𝑁 },

mass function is 𝑚(𝑀). Its information dimension is defined as
ollows [64]:

𝑚 =
−
∑

𝑀𝑖∈2𝛺 𝑚(𝑀𝑖) log
(

𝑚(𝑀𝑖)
2|𝑀𝑖 |−1

)

log
∑

𝑀𝑖∈2𝛺
(

2|𝑀𝑖| − 1
)𝑚(𝑀𝑖)

(10)

where the numerator is Deng entropy 𝐻𝐷𝐸 [22], (2|𝑀𝑖|−1) is the size of
the power set corresponding to the focal element 𝑀𝑖. When the mass
function degenerates into probability distribution, the dimension will
degenerate into Rényi information dimension [64].

3. Information dimension of RPS

The focus of this section is to introduce our newly proposed dimen-
sion specifically designed to deal with RPS. Several properties of this
dimension will be discussed and proved. Additionally, some specific
distribution mode of PMF in RPS are presented and assigned with
respective names.

3.1. Information dimension of RPS

Definition 3.1 (Information Fractal Dimension Of RPS). Consider a fixed
set 𝛺 = {𝜔1, 𝜔2,… , 𝜔𝑛} consisting of 𝑁 elements that are mutually
exclusive and collectively exhaustive, its corresponding RPS is de-
noted as 𝑅𝑃𝑆(𝛺) = {⟨𝑀𝑖𝑗 ,ℳ(𝑀𝑖𝑗 )⟩|𝑀𝑖𝑗 ∈ 𝑃𝐸𝑆(𝛺)}. The information
dimension of the RPS is defined as follows:

𝐷𝑅𝑃𝑆 =
𝐻𝑅𝑃𝑆

log
(

∑𝑁
𝑖=1

∑𝑃 (𝑁,𝑖)
𝑗=1 𝑌𝑖𝑗

) (11)

here the numerator 𝐻𝑅𝑃𝑆 is RPS entropy, and 𝑌𝑖𝑗 in this equation is:

𝑖𝑗 =

{

[𝐹 (𝑖) − 1]ℳ(𝑀𝑖𝑗 ) , if ℳ(𝑀𝑖𝑗 ) ≠ 0
0 , if ℳ(𝑀𝑖𝑗 ) = 0

(12)

hen the cardinality |𝛺| = 1, which means 𝑅𝑃𝑆(𝛺) = {⟨𝑀11, 1⟩},
we define that the information dimension of RPS is equal to zero:
𝐷𝑅𝑃𝑆 = 0.

3.2. Properties of information dimension of RPS

Property 1. In the case where the sequence of the elements in the
ermutation event is not considered, the information dimension of RPS
𝑅𝑃𝑆 will degenerate into information dimension of mass function 𝐷𝑚.

roof of Property 1. In the case where the sequence of the elements
n the permutation event is not considered, the permutation mass
unction will degenerate into a BPA [43], and the RPS entropy 𝐻𝑅𝑃𝑆
ill degenerate into Deng entropy 𝐻𝐷𝐸 [44]. In the meantime, the
3

ermutation number 𝑃 (𝑁, 𝑖) will degenerate into combinatorial number
(𝑁, 𝑖), then 𝐹 (𝑖) should be calculated as 𝐹 (𝑖) =
∑𝑖

𝑎=0 𝐶(𝑖, 𝑎) = 2𝑖 [44].
he information dimension of RPS is calculated as follows:

𝑅𝑃𝑆 =
𝐻𝑅𝑃𝑆

log
(

∑𝑁
𝑖=1

∑𝑃 (𝑁,𝑖)
𝑗=1 𝑌𝑖𝑗

)

=
𝐻𝐷𝐸

log
(

∑𝑁
𝑖=1

∑𝐶(𝑁,𝑖)
𝑗=1 (𝐹 (𝑖) − 1)𝑚(𝑀𝑖𝑗 )

)

=
𝐻𝐷𝐸

log
(

∑𝑁
𝑖=1

∑𝐶(𝑁,𝑖)
𝑗=1 (2|𝑀𝑖𝑗 | − 1)𝑚(𝑀𝑖𝑗 )

)

=
𝐻𝐷𝐸

log
∑

𝑖
(

2|𝑀𝑖| − 1
)𝑚(𝑀𝑖)

= 𝐷𝑚 (13)

Property 2. In the case where each permutation event is constrained to
include only one single element, the information dimension of RPS 𝐷𝑅𝑃𝑆
will degenerate into Rényi information dimension 𝐷𝑃 .

Proof of Property 2. In the case where each permutation event is
constrained to include only one single element, the permutation mass
function will degenerate into a probability distribution [43], and the
RPS entropy 𝐻𝑅𝑃𝑆 will degenerate into Shannon entropy 𝐻𝑆 [44].
Meanwhile the permutation number 𝑃 (𝑁, 𝑖) will degenerate into a
constant 𝑃 (𝑁, 1) = 𝑁 , then 𝐹 (𝑖) will become a constant 𝐹 (1) = 2 [44].

he information dimension of RPS is calculated as follows:

𝑅𝑃𝑆 =
𝐻𝑅𝑃𝑆

log
(

∑𝑁
𝑖=1

∑𝑃 (𝑁,𝑖)
𝑗=1 𝑌𝑖𝑗

)

=
𝐻𝑆

log
(

∑𝑁
𝑗=1(𝐹 (1) − 1)𝑝𝑗

)

=
𝐻𝑆
log𝑁

= 𝐷𝑃 (14)

3.3. Some specific distribution mode of PMF in RPS

For the convenience of later discussion, we will define some special
distribution of PMF in RPS.

Definition 3.2 (Exclusive Distribution For A Maximum Subset). Con-
sider a RPS: 𝑅𝑃𝑆(𝛺) = {⟨𝑀𝑖𝑗 ,ℳ(𝑀𝑖𝑗 )⟩|𝑀𝑖𝑗 ∈ 𝑃𝐸𝑆(𝛺)}, exclusive
istribution for a maximum subset is defined as follows:

(𝑀𝑖𝑗 ) =

{

1 , if 𝑖 = 𝑁 and 𝑗 = 𝑘
0 , otherwise

(15)

here 𝑁 in 𝑀𝑁𝑘 means the cardinality |𝑀𝑁𝑘| = 𝑁 , 𝑘 is a fixed constant
hich takes values from 1 to 𝑃 (𝑁,𝑁). This mode means that all the
robability is distributed to a single maximum subset of cardinality N.

efinition 3.3 (Average Distribution For All Maximum Subsets). Consider
RPS: 𝑅𝑃𝑆(𝛺) = {⟨𝑀𝑖𝑗 ,ℳ(𝑀𝑖𝑗 )⟩|𝑀𝑖𝑗 ∈ 𝑃𝐸𝑆(𝛺)}, average distribution

or all maximum subsets is defined as follows:

(𝑀𝑖𝑗 ) =

{ 1
𝑃 (𝑁,𝑁) , if 𝑖 = 𝑁

0 , otherwise
(16)

here 𝑁 in 𝑀𝑁𝑗 means the cardinality |𝑀𝑁𝑗 | = 𝑁 . This mode
eans that the probability is distributed among all maximum subsets

f cardinality 𝑁 on average.

efinition 3.4 (Average Distribution For All Subsets). Consider a RPS:
𝑃𝑆(𝛺) = {⟨𝑀𝑖𝑗 ,ℳ(𝑀𝑖𝑗 )⟩|𝑀𝑖𝑗 ∈ 𝑃𝐸𝑆(𝛺)}, average distribution for all

subsets is defined as follows:

ℳ(𝑀𝑖𝑗 ) =
1 , if 𝑖 ≠ 0 (17)
𝐹 (𝑁) − 1
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where 𝐹 (𝑁) =
∑𝑁

𝑎=0 𝑃 (𝑁, 𝑎) =
∑𝑁

𝑎=0
𝑁!

(𝑁−𝑎)! is the sum from 0-permuta-
ion of 𝑁 to 𝑁-permutation of 𝑁 . This mode means that the probability
s distributed among all subsets excluding the empty set on average.

efinition 3.5 (Maximum RPS Entropy Distribution). Consider a RPS
enoted as 𝑅𝑃𝑆(𝛺) = {⟨𝑀𝑖𝑗 ,ℳ(𝑀𝑖𝑗 )⟩|𝑀𝑖𝑗 ∈ 𝑃𝐸𝑆(𝛺)}, maximum RPS

entropy distribution is defined as follows:

ℳ(𝑀𝑖𝑗 ) =
𝐹 (𝑖) − 1

∑𝑁
𝑖=1[𝑃 (𝑁, 𝑖)(𝐹 (𝑖) − 1)]

, if 𝑖 ≠ 0 (18)

The RPS entropy based on this distribution mode is the maximum RPS
entropy.

Property 3. Consider a fixed set 𝛺 = {𝜔1, 𝜔2,… , 𝜔𝑛}, as the cardinality
𝛺| approaches infinity, the infinite maximum RPS entropy distribution on
he corresponding RPS is equivalent to average distribution for all maximum
ubsets.

roof of Property 3. We already know 𝐹 (𝑖) =
∑𝑖

𝑎=0
𝑖!

(𝑖−𝑎)! and 𝑃 (𝑁, 𝑖) =
𝑁!

(𝑁−𝑖)! . Assume 𝑃 (𝑖, 𝑖) = 𝑥, then:

𝐹 (𝑖) = 𝑥 + 𝑥
1!

+ 𝑥
2!

+⋯ + 𝑥
𝑖!

(19)

When 𝑖 → ∞, according to the power series of 𝑒𝑥, we can derive that:

lim
→∞

𝐹 (𝑖) = 𝑥(1 + 1
1!

+ 1
2!

+⋯ + 1
𝑖!
) = 𝑒𝑥 (20)

Consider a fixed set 𝛺 = {𝜔1, 𝜔2,… , 𝜔𝑛}, as the cardinality |𝛺| ap-
roaches infinity (i.e., |𝛺| = 𝑁 → ∞), consider the maximum RPS
ntropy distribution like Eq. (18), assume 𝑃 (𝑁,𝑁) = 𝑁! = 𝑦, then:

lim
→∞

ℳ(𝑀𝑁𝑗 ) =
𝐹 (𝑁) − 1

∑𝑁
𝑖=1[𝑃 (𝑁, 𝑖)(𝐹 (𝑖) − 1)]

=
𝑒𝑦 − 1

𝑦 ⋅ (𝐹 (𝑁) − 1) + 𝑦 ⋅ (𝐹 (𝑁 − 1) − 1) +⋯

=
𝑒𝑦 − 1

𝑦 ⋅ (𝑒𝑦 − 1) + 𝑦 ⋅ ( 𝑒𝑦𝑁 − 1) +⋯

= 1
𝑦

(21)

hus 𝑃 (𝑁,𝑁) ⋅ ℳ(𝑀𝑖𝑗 ) = 𝑦 ⋅ 1
𝑦 = 1. This implies that when 𝑖 < 𝑁 :

lim
𝑁→∞

ℳ(𝑀𝑖𝑗 ) =
𝐹 (𝑖) − 1

∑𝑁
𝑖=1[𝑃 (𝑁, 𝑖)(𝐹 (𝑖) − 1)]

= 0 (22)

This condition is equivalent to Eq. (16), which is the definition of the
average distribution for all maximum subsets.

4. Numerical examples and discussions

This section offers multiple numerical examples to exemplify the
utilization of the proposed information dimension of RPS. Since both
the numerator and denominator in the expression of the proposed
information dimension contain logarithms, using any base for calcula-
tions will yield the same final result (but note that the numerator and
denominator should use the same base). For convenience, the logarithm
with base 2 is used for calculations, which means the symbol log used
in the paper omits the base 2 and should be interpreted as log2.

It should be noted that for a given RPS, its corresponding informa-
tion dimension is a fixed constant. For a given distribution mode, as
the cardinality of the set 𝛺 gradually increases, if the corresponding
information dimension converges to a constant, then the constant will
be defined as the information dimension of this distribution mode.

Example 4.1. Consider a fixed set of 𝛺1 = {𝐴,𝐵}, a RPS defined on 𝛺1
is given as follows:
4

𝑅𝑃𝑆(𝛺1) = {⟨{𝐴}, 0.2⟩, ⟨{𝐵}, 0.2⟩, ⟨{𝐴,𝐵}, 0.3⟩, ⟨{𝐵,𝐴}, 0.3⟩}. e
Table 1
The convergence process of the distribution mode in
Example 4.2.

|𝛺𝑛| 𝐻𝑅𝑃𝑆 log
(

∑𝑁
𝑖=1

∑𝑃 (𝑁,𝑖)
𝑗=1 𝑌𝑖𝑗

)

𝐷𝑅𝑃𝑆

1 0 0 0
2 2.0000 2.0000 1
3 3.9069 3.9069 1
4 6.0000 6.0000 1
5 8.3443 8.3443 1
6 10.9337 10.9337 1
7 13.7418 13.7418 1
8 16.7419 16.7419 1
⋮ ⋮ ⋮ ⋮

79 389.9476 389.9476 1
80 396.2696 396.2696 1

Based on Eq. (11), we can calculate its information dimension as
follows:

𝐷𝑅𝑃𝑆 =
−0.2 log

(

0.2
2−1

)

− 0.2 log
(

0.2
2−1

)

− 0.3 log
(

0.3
5−1

)

− 0.3 log
(

0.3
5−1

)

log
[

(2 − 1)0.2 + (2 − 1)0.2 + (5 − 1)0.3 + (5 − 1)0.3
]

≈ 1.3604 (23)

n the case where the sequence of the elements in the permutation event
s not considered, the RPS can be rewritten as follows:

𝑃𝑆′(𝛺1) = {⟨{𝐴}, 0.2⟩, ⟨{𝐵}, 0.2⟩, ⟨{𝐴,𝐵}, 0.6⟩}.

ccording to the degeneracy property, the information dimension can
e calculated as follows:

𝑅𝑃𝑆′ =
−0.2 log

(

0.2
2−1

)

− 0.2 log
(

0.2
2−1

)

− 0.6 log
(

0.6
4−1

)

log
[

(2 − 1)0.2 + (2 − 1)0.2 + (4 − 1)0.6
]

≈ 1.1752

= 𝐷𝑚 (24)

In the case where each permutation event is constrained to include only
one single element, the RPS can be rewritten as follows:

𝑅𝑃𝑆′′(𝛺1) = {⟨{𝐴}, 0.5⟩, ⟨{𝐵}, 0.5⟩}.

ccording to the degeneracy property, the information dimension can
e calculated as follows:

𝑅𝑃𝑆′′ =
−0.5 log

(

0.5
2−1

)

− 0.5 log
(

0.5
2−1

)

log
[

(2 − 1)0.5 + (2 − 1)0.5
]

= 1

= 𝐷𝑆 (25)

The calculation results in Example 4.1 are consistent with Prop-
rty 1 and Property 2 proposed in Section 3, indicating the correctness
nd effectiveness of the proposed properties.

xample 4.2. Consider a fixed distribution mode: exclusive distribution
or a maximum subset, consider a variable set 𝛺𝑛 = {𝜔1, 𝜔2,… , 𝜔𝑛}
ith its cardinality gradually increasing, where |𝛺𝑛| = 𝑁 is an integer
ariable that increases from 1. The corresponding RPS is: 𝑅𝑃𝑆(𝛺𝑛) =
⟨{𝜔1, 𝜔2,… , 𝜔𝑛}, 1⟩}.

The results are presented in Table 1, where the first column cor-
esponds to the cardinality of the set 𝛺𝑛, the second column shows
he RPS entropy, the third column represents the denominator in the
xpression for information dimension, and the last column displays the
nformation dimension of RPS.

Note that the 𝑥-axis in Fig. 1 represents the denominator of the
xpression for information dimension, while the 𝑦-axis shows the RPS
ntropy. This implies that the slope of the line corresponds to the in-
ormation dimension. We will use this plotting method in the following

xamples as well (see Figs. 2, 3 and 6).
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Fig. 1. The result of Example 4.2, where |𝛺𝑛| = 1, 2,… , 80.
Table 2
The convergence process of the distribution mode in
Example 4.3.

|𝛺𝑛| 𝐻𝑅𝑃𝑆 log
(

∑𝑁
𝑖=1

∑𝑃 (𝑁,𝑖)
𝑗=1 𝑌𝑖𝑗

)

𝐷𝑅𝑃𝑆

1 0 0 0
2 3.0000 2.0000 1.5000
3 6.4919 3.2361 2.0061
4 10.5850 4.8350 2.1893
5 15.2512 6.9764 2.1861
6 20.4255 9.5070 2.1485
7 26.0410 12.3019 2.1168
8 32.0411 15.2996 2.0942
⋮ ⋮ ⋮ ⋮

79 778.4526 388.5049 2.00371
80 791.0964 394.8269 2.00365
⋮ ⋮ ⋮ ⋮

300 4083.9980 2041.2777 2.00071
500 7536.1497 3767.3535 2.00038
700 11225.4682 5612.0128 2.00026

Regarding the distribution mode in Example 4.2, as the cardinality
of 𝛺𝑛 increases, the RPS information dimension for this mode of distri-
bution converges to 1. As shown in Fig. 1, the curve exhibits a linear
relationship with a slope of 1, indicating that the RPS information
dimension for this distribution mode is 1.

Example 4.3. Consider a fixed distribution mode: average distribution
for all maximum subsets, consider a variable set 𝛺𝑛 = {𝜔1, 𝜔2,… , 𝜔𝑛}
with its cardinality gradually increasing, where |𝛺𝑛| = 𝑁 is an integer
variable that increases from 1. The corresponding RPS is: 𝑅𝑃𝑆′(𝛺𝑛) =
{⟨{𝜔1, 𝜔2,… , 𝜔𝑛},

1
𝑃 (𝑁,𝑁) ⟩,… , ⟨{𝜔𝑛, 𝜔𝑛−1,… , 𝜔1},

1
𝑃 (𝑁,𝑁) ⟩}.

The results is presented in Table 2. It can be observed that, un-
like the convergence process in other examples, the RPS information
dimension in Example 4.3 shows a trend of increasing and then de-
creasing, and gradually converges to 2 as |𝛺𝑛| increases. To enhance
the illustration of the convergence of the distribution mode, the rel-
evant parameters for |𝛺𝑛| = 300, 500, 700 are calculated. Moreover, a
mathematical proof is presented.

Proof for the convergence of the distribution mode in Example 4.3.
When 𝑁 = |𝛺𝑛| → ∞, assume that 𝑃 (𝑁,𝑁) = 𝑁! = 𝑥, then:

lim
𝑁→∞

𝐷𝑅𝑃𝑆 =
−
∑𝑁

𝑖=1
∑𝑃 (𝑁,𝑖)

𝑗=1 ℳ(𝑀𝑖𝑗 ) log
(

ℳ(𝑀𝑖𝑗 )
𝐹 (𝑖)−1

)

log
(

∑𝑁 ∑𝑃 (𝑁,𝑖) 𝑌
)

5

𝑖=1 𝑗=1 𝑖𝑗
=
−𝑥 ⋅ 1

𝑥 ⋅ log
(

1∕𝑥
𝑒𝑥−1

)

log
[

𝑥 ⋅ (𝑒𝑥 − 1)
1
𝑥
]

=
log(𝑒𝑥2 − 𝑥)

log(𝑥) + 1
𝑥 log(𝑒𝑥 − 1)

=
log(𝑒𝑥2 − 𝑥)

log(𝑥)
∞
∞=

2𝑒𝑥−1
𝑒𝑥2−𝑥

1
𝑥

= 2𝑒𝑥2 − 𝑥
𝑒𝑥2 − 𝑥

= 2 (26)

It proves that as |𝛺𝑛| → ∞, the information dimension converges
to 2. In other words, the information dimension of average distribution
for all maximum subsets is 2.

The reasonable interpretation of the information dimension is still
an open question for exploration. In spatial geometry, one dimen-
sion represents a straight line, two dimensions represent a plane, and
three dimensions represent a volume. It can be observed that as the
dimension increases, the complexity of the space and the informa-
tion it contains also increase. By analogy, the information dimension
can possibly be interpreted as a measure of information complexity.
Since the numerator of the dimension function in Eq. (11) is RPS
entropy, information dimension can also measure the uncertainty of
the information.

In evidence theory, 𝑚(𝛺) = 1 denotes complete uncertainty re-
garding a frame of discernment, where the assignment of probabilities
is unknown [2,3]. By comparing Example 4.2 and Example 4.3, we
observe that the information dimension of the average distribution
for all maximum subsets is larger, indicating that the distribution
mode is more complex and uncertain than the exclusive distribution
for a maximum subset. Thus, in RPS, the distribution mode that
corresponds to the scenario where the information is entirely unknown
should be the average distribution for all maximum subsets. This
conclusion is reasonable since in the exclusive distribution for a
maximum subset distribution mode, despite the lack of information
about the individual permutation events, information about the order
of the elements can be obtained. However, in the average distribu-
tion for all maximum subsets mode, the probability is averagely
distributed among each maximum subset, resulting in the absence of
any information about the order of the elements.
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Fig. 2. The result of Example 4.3, where |𝛺𝑛| = 1, 2,… , 80.
Table 3
The convergence process of the distribution mode in
Example 4.4.

|𝛺𝑛| 𝐻𝑅𝑃𝑆 log
(

∑𝑁
𝑖=1

∑𝑃 (𝑁,𝑖)
𝑗=1 𝑌𝑖𝑗

)

𝐷𝑅𝑃𝑆

1 0 0 0
2 3.3219 2.4548 1.3533
3 6.8704 4.1523 1.6546
4 10.9278 6.0886 1.7948
5 15.5406 8.3687 1.8570
6 20.6691 10.9391 1.8895
7 26.2495 13.7428 1.9101
8 32.2231 16.7420 1.9247
⋮ ⋮ ⋮ ⋮

79 778.4708 389.9476 1.99635
80 791.1144 396.2696 1.99640
⋮ ⋮ ⋮ ⋮

300 4084.0028 2042.7203 1.99930
500 7536.1526 3768.7962 1.99962
700 11225.4703 5613.4555 1.99974

Example 4.4. Consider a fixed distribution mode: maximum RPS
entropy distribution, consider a variable set 𝛺𝑛 = {𝜔1, 𝜔2,… , 𝜔𝑛}
with its cardinality gradually increasing, where |𝛺𝑛| = 𝑁 is an integer
variable that increases from 1. The corresponding RPS is 𝑅𝑃𝑆′′(𝛺𝑛) =
{⟨𝜔1,

𝐹 (1)−1
∑𝑁

𝑖=1[𝑃 (𝑁,𝑖)(𝐹 (𝑖)−1)]
⟩, ⟨𝜔2,

𝐹 (1)−1
∑𝑁

𝑖=1[𝑃 (𝑁,𝑖)(𝐹 (𝑖)−1)]
⟩,… , ⟨{𝜔𝑛, 𝜔𝑛−1,… , 𝜔1},

𝐹 (𝑁)−1
∑𝑁

𝑖=1[𝑃 (𝑁,𝑖)(𝐹 (𝑖)−1)]
⟩}.

Combining the data in Fig. 3 and Table 3, we observe that the
information dimension of the maximum RPS entropy distribution
is 2, which is the same as the information dimension of the average
distribution for all maximum subsets in Example 4.3. This result is in
line with Property 3, where it is noted that the two distribution modes
become equivalent when the cardinality of 𝛺𝑛 approaches infinity.
For instance, for |𝛺𝑛| = 700, it can be computed that 𝑃 (700, 700) ⋅

𝐹 (700)−1
∑700

𝑖=1[𝑃 (700,𝑖)(𝐹 (𝑖)−1)]
≈ 0.99857, which suggests that the maximum RPS

entropy distribution has nearly distributed all probability among the
maximum subsets on average.

An interesting phenomenon is that the information dimension of
the maximum RPS entropy distribution is 2, which is equal to
the fractal dimension of the Peano curve [49] and Brownian motion
trajectory on a plane [58]. The images are shown in Figs. 4 and 5. This
consistency establishes a connection between information theory and
fractal geometry, and inspires us to consider the application of fractal
concepts in solving information problems.
6

Table 4
The convergence process of the distribution mode in
Example 4.5.

|𝛺𝑛| 𝐻𝑅𝑃𝑆 log
(

∑𝑁
𝑖=1

∑𝑃 (𝑁,𝑖)
𝑗=1 𝑌𝑖𝑗

)

𝐷𝑅𝑃𝑆

1 0 0 0
2 3.0000 2.2716 1.3207
3 6.2696 4.0676 1.5413
4 10.0901 6.0642 1.6639
5 14.4850 8.3632 1.7320
6 19.4045 10.9380 1.7740
7 24.7890 13.7426 1.8038
8 30.5841 16.7420 1.8268
⋮ ⋮ ⋮ ⋮

79 773.6007 389.9476 1.98386
80 786.2263 396.2696 1.98407
⋮ ⋮ ⋮ ⋮

300 4077.2143 2042.7203 1.99597
500 7528.6281 3768.7962 1.99762
700 11217.4608 5613.4555 1.99832

Example 4.5. Consider a fixed distribution mode: average distri-
bution for all subsets, consider a variable set 𝛺𝑛 = {𝜔1, 𝜔2,… , 𝜔𝑛}
with its cardinality gradually increasing, where |𝛺𝑛| = 𝑁 is an integer
variable that increases from 1. The corresponding RPS is 𝑅𝑃𝑆′′′(𝛺𝑛) =
{⟨𝜔1,

1
𝐹 (𝑁)−1 ⟩, ⟨𝜔2,

1
𝐹 (𝑁)−1 ⟩,… , ⟨{𝜔𝑛, 𝜔𝑛−1,… , 𝜔1},

1
𝐹 (𝑁)−1 ⟩}.

In this example, the information dimension computed from the
first 80 data points is approximately 1.98, but as |𝛺𝑛| increases, the
information dimension gradually approaches 2. It can be seen from
Table 4 that when |𝛺𝑛| = 700, the dimension is 1.99832, which is
close to 2. Therefore, when |𝛺𝑛| → ∞, it can be considered that the
information dimension of this example’s distribution mode is 2 (see
Fig. 6 and Table 4).

The information dimension of RPS, as a parameter measuring the
complexity of PMF distribution mode of RPS, still has an open issue
regarding its specific application scenarios. Here, a possible application
is proposed.

On the battlefield, there are numerous types of enemy attacks that
must be responded to, which can be broadly categorized as biochemi-
cal, electromagnetic, and physical attacks. Our military has developed
several general response strategies for different attack categories, and
the exact response strategies depends on specific type of the attack. This
can be represented by a set 𝛺 = {𝐵1, 𝐵2,… , 𝐵𝑛, 𝐸1, 𝐸2,… , 𝐸𝑛, 𝑃1, 𝑃2,… ,
𝑃𝑛}, where B represents biochemical attacks, E represents electromag-
netic attacks, and P represents physical attacks.
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Fig. 3. The result of Example 4.4, where |𝛺𝑛| = 1, 2,… , 80.
Fig. 4. The image of the Peano curve.
Source: Taken from Wikipedia.
Fig. 5. The plot of Brownian motion trajectory on a plane generated by Python.
When the PMF of a specific attack is obtained through a radar, the
information dimension of such a message can be measured to determine
its complexity and further adjust the resorted defense strategy. If we
need to quickly defend against an attack with a high information
dimension, the RPS can be reduced to a set containing only B, E, and
P elements, thereby significantly improving data processing efficiency.
Conversely, if we need to make precise defenses against an attack
with a low information dimension, the RPS can be increased to a set
containing more elements to improve the specificity and accuracy of
7

the data. This concept is similar to the notion of fractals, where the
focus can be on the global structure of a shape, or on the fine-scale
details, depending on the type of information required.

A recent study has shown that the maximum nonsymmetric entropy
principle is of potential value for the study of complexity in a cellular
automaton system [72]. Our proposed information dimension also
holds promising applications in quantifying the information complexity
of cellular automaton systems. In future work, we will explore various
potential applications of the proposed information dimension.
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Fig. 6. The result of Example 4.5, where |𝛺𝑛| = 1, 2,… , 80.
5. Conclusion

Information dimension holds significant importance in the infor-
mation theory. Rényi information dimension can be used to cope
with probability distribution while information fractal dimension can
be applied to handle mass function in evidence theory. Recently, a
novel set named random permutation set (RPS) is introduced, which
considers all possible permutations of elements within a given set.
Nevertheless, how to determine the information dimension of RPS is
still an unresolved problem. The key contribution of our work is to
develop an information dimension suitable for RPS, which ensures the
compatibility with both Rényi information dimension and information
fractal dimension of mass function. Several numerical examples are
used to exemplify the utilization of the proposed dimension. Based
on the numerical examples, an intriguing discovery has been made:
the information dimension of permutation mass function corresponding
to the maximum RPS entropy is 2, which is equivalent to the fractal
dimension of Brownian motion and Peano curve.
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